While ‘sustainable agriculture’ has been defined in many ways, it is fundamentally a process of social learning, not led by a science that overemphasises production and neglects maintenance functions within agroecosystems.
Hill (1998) sees this blind spot as one of a number of indicators of our undeveloped and distressed psychosocial state. Habits, perception and assumptions determine what we see and want to see, and correlation is not cause. This realisation is another aspect of the change that will be required in our paradigm – the way we learned to see the world.
How do we find the road to a sustainable agriculture producing healthy food in a healthy landscape? How do we turn our ‘Clean and Green’ image into reality? Minerals and microbes are the key, in both soil and human health.
Over the past 60 years, mineral density of foods has declined to less than half of former levels (Bergner 1997, McCance and Widdowson 2000).We need to increase it again through improved production systems, and keep it available with proper food processing, so that good nutrition returns to the way our foods are grown, processed and prepared.
Real medicine must start with the patient’s diet and, ultimately, the nutrition on the farm (Anderson 2000, 2004). Worthington (2001) and the Soil Association (2002) found genuine differences in nutrient content of organic and conventional crops – improvements which could be even greater if all organic crops are actively managed with microbes and minerals. Farmers and graziers need to be paid for such quality.
Active management of the soil foodweb, remineralisation, and substantial increase of soil organic carbon are essential to reaching ecologically sustainable production systems and a (less-un)sustainable agriculture. Such a system produces healthy food with good taste and structure (i.e. availability calcium and silica), and extended shelf-life.
Trees are important as shelterbelts in a dry, wind-swept continent. There are examples in many districts where farmers have converted a proportion (say 10%) of their property to trees and wetlands (often from say 0.5%), resulting in improved productivity through improved water use efficiency and decreased sensitivity to droughts.{mospagebreak}
This will especially be the case when appropriately combined with Natural Sequence Farming which rehydrates the landscape and makes soils healthy when following Peter Andrews’ principles that include biological farming (Andrews 2006). Healthy, living soils will be able to adapt to a changing climate.
Organic-biological farming methods seem promising on a landscape and catchment scale, as they result, through minimizing the use of synthetic chemicals, in farming systems that stimulate biodiversity, stabilise the soil, and balance the hydrology, thereby reducing off-farm impacts. It is important to mix and match such systems with landscape changing initiatives such as permaculture (PRI 2006), Keyline Design (Yeomans 2006) and Natural Sequence Farming (Andrews 2006, Newell 2006, NSF 2006) – thus increasing the knowledge intensity in farming.
In most districts today, there are properties applying sustainable practices as outlined above. These practices have been achieved with persistence by the manager – through trial and error, under financial pressure, and on fragile soils in our highly variable climate. It is now the task of science, using participatory research, to connect up these ‘dots’ in the landscape using appropriate concepts and principles.
A typical agricultural manager is both time poor and cash poor – thereby, of necessity, readily following advise from (trusted) outsiders. Action research is needed to develop indicators that conceptualise farmer knowledge of natural resource management. This, in turn, will feed the required information-exchange networks, allowing knowledge to be transferred in time and space to achieve and maintain soil health, optimise production and minimise risk to achieving profitable farms in sustainable rural communities.